
DTIC FILE- COPY

!1U;

(0CIRRUS: INDUCING SUBJECT MODELS1J
FROM PROTOCOL DATA

C\J Technical Report PCG - 22

Bernadette Kowalski & Kurt VanLehn

DT

DEPA TMETINTSM=

Approved for public relea~se;

Carnegie Mellon University



ti

Accession For

NTIS cPA&I

DTiC TAB

CIRRUS: INDUCING SUBJECT MODELS JU t" -"
FROM PROTOCOL DATA

Technical Report PCG -22

i -l _ f . -,

Bernadette Kowalski & Kurt VanLehn

Departments of Psychology & Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

August 16, 1988

In V. Patel (Ed.) Proceedings of the Tenth Annual Conference
of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Also available as Technical report AIP - 56 ,

t3

This is the final report on the research supported by the Personnel and
Training Research Program, Psychology Sciences Division, Office of Naval
Research, under contract N00014-86-K-0349. Reproduction in whole or in part
is permitted for any purpose of the United States Government. Approved for
public release; distribution unlimited.



Unclas' if Led

REPORT DOCUMENTATION PAGE
ta. siPOT gomjJ CLASSIFICAION 11b RE lTVE MARKW4GS

Unclassified_________________________

2&. SECURITY CIASSIWIAT1O AUIhRITY I OISTRIIUTION /AVAILASILITY OF REPORT

2b. 1CWiACr*R~dWNPA04 $41DILEApproved for public release;
2b. CLASFKAIOIIOO GAAISG O4EULEDistribution unlimited

4. PERFORMING OIRGAINIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUIJMER(S)

PCG - 22 Same as Performing Organization

Si.NAM O PEFORIN ORANIATON Sb QFICE SYMBOL ?a NAME OF MONITORING ORGANIZATIONCarnegie Mellon University (Je~Able) Personnel and Training ResearchGo.__NAME _OF __PERFORMING__ORGANIZATION_________ Office of Naval Research (Code 1142PT)

GC ADDRESS (CIMy Stats, MW~ ZIPCOde) 7b ADDRESS (City, State. anid ZIP Code)

Department of Psychology 800 N. Quincy Street

Pittsburgh, Pennsylvania 15213 Arlington, VA 22217-5000

Go. NAME OF FUiNDING /SPONSORING lab. OFFICE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J (if apphCable) N00014-88-K-0086

;ame as Monitoring Organization I_______
SL. ADDRESS (City, State, and ZIP Cods) 10 SOURCE Of FUNDING NUMBERS

PROGRAM IPROJECT TASK WRK UNIT
ELEMENT NO NO. No. ICaUs*" 14

11 TITLE (k~idude Security 0awfication)N/NANANI

Cirrus: Inducing subject models from protocol data

12. PERSONAL AUTHOR(S)
Kowalski, Bernaet d ,Vnen-Kti

13a. TYPE OF REPORT lib. 7IWE COVERED 14. DATE Of REPORT (Year, hkwvMt. Day) S. PAGE COUNT
Technical IFROM 88JANO1 TO 90DEC311 18 ram 61

16 SUPPLEMEN~TARY NOTATION In V. Patel (Ed.) Proceedings of the Tenth Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Eribaum. pp. 623-629. Also available as

I Technical report AIP-56.
17 COSATI CODES 18 SUBJECT TERMS (Coninue on revers of necelssary and identify by block number)

FIELD GROUP SUB-GROUP -Protocol analysis,_machine learning,

~~~7~Y~icial ineliec

19, ABST7 ACT (Continue onreverse f7 nesaynd identify by blok number)

th2Crrsi A system for1 aiin the ,iiii anli oprit assumes that subjects are following a
non-deterministic procedure or plan, which Is spcid for user. It uses machine learning
techniqus to find a deterministic version of the given procedue that lzes te fit between the

- procedure's actions and the subject's actions~as recorded in the protocol given to a for anayis. This
paper describes the theory of problem solving that Cirrus i based on, the, current i ismientation, its
analysis of several protocols, and our plans for future improvements.

20. DISTRilluT)ON IAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

224 NAM Of RBSPOOSII INO11VIDUAL 22b TELEPHONE (blcA Area C)Zc. OFFICE SYMBL
Susan Chipman (202) 696-4322 R42 PT00 FORM 1473.6 WA ANR edition may be used until exhtausted. SECURITY CLASSIKIATIONO TI PGAll otio editions a's @bNOe. Uclasif ied 4O HSPG



Cirrus: Inducing Subject Models From Protocol Data

Bernadette Kowalski and Kurt VanLehn

Departments of Computer Science and Psychology
Carnegie-Mellon University

INTRODUCTION

Verbal protocol data are collected by asking subjects to talk aloud as they solve a problem, and
protocol analysis is the process of interpreting such data. Protocol analysis is used routinely by
psychologists and other behavior scientists, and more recently, by knowledge engineers who wish to
embed the knowledge of human experts in an expert system. However, protocol analysis is notoriously
difficult and time comsuming.

Several systems have been developed to aid in protocol analysis. Waterman and Newell (1971,
1973) developed a system that could read the natural langauge of the protocol and produce a formal
trace of it (a problem behavior graph). The system, however, did not produce an abstract model of the
subject. Bhaskar and Simon (1977) avoided the natural language understanding problem by L.dving a
human coder read the protocol and formalize it. The Bhaskar and Simon program, however, was not
designed to construct a model of the subject, but instead to test a specific model of thermodynamics
problem solving that was built into it. Fisher's (1988) system provides facilities for assigning formal codes
to sections of protocols, interrogating a database of codes/sections, performing path analyses, and
inferring flow-chart-like models of the subject's behavior.

Cirrus is halfway between the theoretical neutrality of Fisher's program and the theoretical
commitment of Bhaskar and Simon's program. It requires the user to provide an underdetermined model,
namely, a problem space (Newell & Simon, 1972). A problem space consists mainly of a representation
for states and a set of state-change operators. It is not a complete model of the subject's behavior
because it does not contain information for selection of operators or goals. The job of Cirrus is to infer
from the data the subject's selection strategies. A completely determined, subject-specific model thus
consists of the problem space given to Cirrus " , user and the selection strategies constructed by
Cirrus to maximize the fit with the subject's protov. I d(,' i.

Cirrus requires a human to encode the verb,. 1 .otocol. However, Cirrus can not accept all formal
codes, but only those that designate actions (i.e., the application of a primitive state-change operator).
Moreover, Cirrus requires that all the subject's actions be encoded. A protocol that consists of all and
only the actions of the subject is called an action protocol. Typically, action protocols are collected by
implementing the experimental task on a laboratory computer and saving the subject's keystrokes. A
verbal protocol is usually taped at the same time because subjects often make revealing comments about
goals, plans, rationales, difficulties, etc.

Cirrus and the human analyst have distinct jobs in analyzing a protocol. The human analyst
uncovers the subject's problem space by drawing upon common sense and knowledge of the task
domain (something that Cirrus has none of) in order to interpret the whole protocol, both actions and
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non-action commentaries. Cirrus then tests the adequacy of the human's analysis and deepens it by
trying to find selection strategies that will accurately postdict the subject's actions. If some sections of the
action protocol are not adequately fit, then the human theorist can re-examine the protocol at those
points, revise the problem space, and run Cirrus again. In short, Cirrus is a data analysis tool and not an
automated protocol analyst.

This paper describes the current version of Cirrus. (An earlier version is reported in VanLehn and
Garlick, 1987.) The first section describes the theory of problem solving that Cirrus assumes. Although
the theory is quite standard and noncommittal, it is nonetheless the source of most of Cirrus' limitations as
an analytical tool. The second section describes how Cirrus works. The third section discusses Cirrus'
analysis of protocols from two different task domains. The last section discusses our plans for removing
the current restrictions imposed by Cirrus' theory of problem solving.

ASSUMPTIONS ABOUT PROBLEM SOLVING

This section presents some assumptions about the representation and interpretation of procedural
knowledge. All of the assumptions are fairly standard in the field, but the particular combination of
assumptions used in Cirrus need to be made explicit. First, the basic problem solving architecture will be
described, then the assumptions behind it will be discussed.

The basic cycle of problem solving is to (1) select a goal, (2) select an operator that is relevant to
achieving that goal, (3) execute the operator, and (4) delete the goal. Some operators are primitive, in
that executing them changes the state of the problem. Other operators are macro-operators, in that
executing them causes new goals to be created. This basic cycle is initiated with a top level gcal; it
finishes when there are no goals left.

The knowledge representation consists of (1) a set of operators, (2) a strategy that determines
which operator to choose for any given goal, (3) a strategy for determining which goal to choose, and (4)
a state description vocabulary, which is a list of the attributes of states that are considered relevant for
making strategic decisions. The user provides Cirrus with the set of operators, the operator selection
strategy and the state description vocabulary. Cirrus infers the subject's goal selection strategy. Soon,
Cirrus will also be able to infer the subject's operator selection strategy as well. This capability is a
standard technique in machine learning (see, e.g., Langley and Ohlsson, 1984), and we anticipate no
problems incorporating it in Cirrus. Thus, Cirrus will require only the prot em space (i.e., operators and
state description language) from the user, and will infer the rest of the subject model itself.

There are several tacit features of this problem solving architecture that distinguish it from others in
the GPS/STRIPS class. First, it lacks GPS's commitment to difference reduction as the method for
choosing operators. The operator selection strategy can, in principle, be any function of the current state,
and not one that reduces the difference between the current state and the goal. Currently, Cirrus uses a
simple representation for operator selection strategies. Each operator has a condition attached to it. After
the architecture has found which operators are relevant to the current goal, it tests the conditions
attached to the operators. If exactly one operator has a true condition, it is selected; otherwise an
impasse occurs (Brown & VanLehn, 1980). Currently, Cirrus does not model subject's reactions to
impasses.

In order to back up during problem solving, most GPS-style problem solvers have a state selection
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phase that immediately precedes the goal selection phase. Cirrus does not, in part because backing up is
not that common, and when it does occur, the subject often just starts the problem over (Newell & Simon.
1972). When starting over occurs, it is usually easy for a human analyst to spot, so the coder can merely
given Cirrus a protocol that has two solutions of the same problem, the first of which happens to end in
failure. Thus, Cirrus can "handle" the most common types of backup, albeit crudely.

Like GPS, Cirrus does not model learning during the course of problem solving.
Like GPS, Cirrus has very limited planning abilities. Subjects sometimes plan ahead by mentally

simulating the next few actions. Cirrus can not model this. Nor can Cirrus model abstraction planning,
such as that used by Newell and Simon's logic subjects. Nor can Cirrus model envisioning, wherein a
subject mentally simulates the working of a physcial device. Cirrus can not do these things because it
only represents one problem state. Usually, the current problem state represents current state of the real,
physical world, although it can represent an imaginary world, as when the subject is doing mental
mulitplcation. Cirrus can not represent someone who is working in both a mental world (often as a way of
developing a plan) and a real world. This means that the only kind of planning that Cirrus can represent
is operator subgoaling, wherein one develops a stack of subgoals before finally arriving at an operator
that can be executed directly (e.g., "In order to get from Pittsburgh to Montreal, I'll fly; but a precondition
of flying is being at the airport, so I'll take a cab to the airport; but a precondition of taking a cab is ...").

However, Cirrus does have a flexible approach to subgoaling. It does not insist on a depth-first
traversal of the goal hierarchy. Instead, it assumes people have a goal selection strategy. For instance, if
taking a cab spawns the subgoals of (1) being at a cab and (2) having enough money to take a cab, then
the goal selection strategy would have to decide which of these new goals to work on. Indeed, it could
even uocide to work on an older goal, such as obtaining money for airfare. Thus, Cirrus can model
subjects who jump around in the goal hierarchy. This has turned out, somewhat surprisingly, to be
necessary even for modeling simple skills, such as subtraction (VanLehn & Ball, 1987).

The goal selection strategy of Cirrus is represented as a set of conditional preferences of the form
"Prefer <goal-l1 over <goal-2> when <condition>." For instance, in subtraction, it is important to execute
borrowing actions that effect the top digit of a column before one answers the column. To represent this,
one can use preferences such as "Prefer (Add10 ?C1) over (Diff ?C2) when C1-C2." This says that
when both the goal of adding ten to the top of a column and the goal of taking the difference in a column
occur, and they refer to the same column, then one should do the addition of ten first. Such preferences
are used in many contemporary problem solvers, such as Soar (Laird, Newell, & Rosenbloom, 1987) and
Prodigy (Minton et al., 1987).

Cirrus has been described as problem solver. However, that is only a small fraction of its job. Its
main task is to find the goal selection strategy of the subject (and, soon, the operator selection strategies
as well). When those are found, the complete model of the subject is executed by the problem solver in
order to measure its fit to the protocol.

THE ANALYSIS METHOD

This section describes the techniques used by Cims to infer the goal selection strategy. Note that,
in contrast to the preceding section, these processes are not claimed to be psychological processes.
Neither the subject nor the human analyst does anything remotely similar to what is described in this
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section.
The first step in the analysis of an action protocol is to parse the protocol using the operator set

provided by the user. The algorithm used is a modification of a standard top-down algorithm for parsing
with context-free grammars. The result, in the ideal case, is a single tree for each problem. The tree
represents the goal-subgoal decomposition that the subject took on that problem. The leaves of the tree
are the primitive operator applications that constitute the subject's actions. In the less-than-ideal case,
parsing a problem produces more than one tree. Cirrus asks the user to choose. In the worst case, some
problems can not be parsed at all. This indicates an inadequacy in the set of operators which the user
must correct.

The second step in the analysis is to convert each goal-subgoal tree into the trace that the problem
solver would produce if it had generated this tree. The trace contains each operator selection event and
each goal selection event that the problem solver would have had to perform. Cirrus generates this trace
by traversing the tree, and outputing the appropriate selection events each time it visits a goal in the tree.
Unfortunately, the trace is not always uniquely determined. Sometimes the tree can be traversed in
hundreds of ways while still remaining faithful to the chronology of the action protocol. Cirrus currently
uses heuristics to guide the tree traversal. The heuristics are based on the assumption that solvers tend
to minimize their working memory load. The heuristics guide the tree traversal along a path that
minimizes the number of active goals. It is not yet clear whether this heuristic will always be a good one
or how to detect when it has led the analysis off on a garden path. This would be a good place for Cirrus
to have access to the non-action parts of the verbal protocol, because some of the subject's comments
might indicate in which order the goals are considered.

The next step in the analysis is to convert the goal selection events into preferences. This occurs
in two phases. First, preferences are constructed without conditions attached to them. Such preferences
can be either consistent with a goal selection event, or inconsistent, or irrelevant. Thus, if the preference
is "Prefer A over B*, and the event is that goal A is chosen when both A and B exist, then the preference
is consistent with the event. The preference would be inconsistent with the event if B were chosen
instead of A. The preference is relevant only to events where both A and B exist. Preferences are
constructed only if they are consistent with at least one event.

The second phase builds conditions for preferences. If a preference is consistent with some events
and inconsistent with others, then a condition is induced that is true of all the consistent events and false
of all the inconsistent ones. The condition is a boolean combination of attribute-value pairs drawn from
the state description vocabulary. (This is the main reason for having a state description vocubulary.) The
ID3 algorithm is used to perform condition induction (Quinlan, 1983). There are some biases built into
ID3 as well as all other condition induction algorithms. We have experimented with several other
induction algorithms: the Chi-squared variant of ID3 (Quinlan, 1986), the standard version space
algorithm (Mitchell, 1982), a noise-handling version space algorithm (Mitchell, 1978), and some
algorithms of our own. Our experience is that the bias inherent in the condition inducing algorithm is not
as important as the bias inherent in the state description vocabulary. An inadequate vocabulary will hurt
them all, and a good vocabulary allows all of them to succeed, more or less. We use ID3 because it
seems best at handling noisy data.

The last step in the analysis Is to test the model by executing it and comparing its "protocol" with



KOWALSKI & VANLEHN

the subject's. This step is purely for the user's benefit, because the current version of Cirrus can not go
back and reconsider the heuristically determined choices it made during analysis. The user is responsible
for feeding the results of the analysis back into the Cirrus, typically via changes in the state description
vocabulary.

The original version of Cirrus (VanLehn & Garlick, 1987) used a completely different representation
for goal selection stategies and a completely different method for inferring it. Kowalski and VanLehn
(1988) discuss its shortcomings and the experiments that led to the current 'version of Cirrus.

RESULTS

Cirrus has been extensively tested on protocols collected from eight grade-school students solving
mufti-column subtraction problems (Kowalski & VarLehn, 1988). Preliminary testing has also been done
on two protocols collected via the use of Sketch, a tutoring system that trains students to graph
transcendental equations (Trowbridge, Larkin & Sheftic, 1987). This section discusses our experiences
using Cirnus to analyze these data.

The subtraction protocols were collected as part of a study reported earlier (VanLehn & Ball, 1987),
so the subjects, methods and results will not be detailed here. The chief finding is that eight subjects in a
biased sample of 26 third-graders executed subtraction procedures In non-standard orders. For instance,
some students would do all the borrowing in a problem first, moving from right to left, then fill in the
answers to the col'imne, moving from 13ft to right. A sec?,n' finding is that students frequently change
their execution ordering, often in the middle of solving a problem. This makes it seemn likely that they are
using a non-standard goal selection strategy that is conditional on the characteristics of the problem state,
rather than having learned a non-standard algorithm for solving subtraction problems. However, when
these protocols were analyzed by hand, we were only partially successful at finding goal selection
strategies that would explain the subjects behavior. Up to one-third of the choice points in some protocols
were left undetermined (VanLehn & Ball, 1987). The tedium of trying to improve this fit was a major
motivation for the Cirrus project.

When Cirrus analyzes the action protocols of the eight non-standard order subjects, the subject
models obtained are nearly perfect. Except for one ambiguous choice point in the protocol of one
subject, the models infered by Cirrus exactly match the protocols. Not only does Cirrus do the job it was
designed to do, it outperforms human analysts In its ability to match the students' protocols.

However, perfect matching of protocols is to be expected from Cirrus. The induction techniques
used in Cirrus are powerful enough to analyze any goal selection strategy, provided that the user has the
patience to keep augmenting the state description vocabulary until Cirrus finds appropriate conditions for
all the preferences. Thus, the appropriate measure of Cirrus' performance is whether the preferences it
finds make sense as goal selection strategies. This Is not an easy evaluation to make objectively, so we
can only present our experiences. In general, when Cirrus builds a small condition (3 to 5 attributes), our
intuition agrees with its condition; the student really does seem to have that preference. However, when
Cirrus builds a large, deeply nested condition (7 to 9 predicates), our intuition is that the subject probably
has no preference (i.e., they choose whimsically between these two types of goals) or has a define
preference but occasionally slips in applying it. However, during the early stages of using Cirrus on these
protocols, most of the large, uninterpretable conditions turned out to be due to inadequacies in the state
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description vocabulary.
The Sketch data were collected directly from the user interface of a tutoring system. Preliminary

analysis of the Sketch protocols showed that Cirrus is a feasible system to use to analyze these in greater
depth. The protocols share a characteristic with the subtraction protocols in that subjects tend to alter
subtask ordering depending on the problem context. Cirrus has done an adequate job of characterizing
the problem features that lead to the reordering of subtasks, although a theorist has not yet spent time in
the loop with Cirrus refining the state description vocabulary to fully capture the patterns in the data.

DISCUSSION AND FURTHER WORK

Cirrus has potential both as a data analysis tool for scientists and as the student modelling
component of an intelligent tutoring system (VanLehn, 1988). Indeed, Cirrus grew out earlier two student
modellers for the subtraction task, Debuggy (Burton, 1982) and ACM (Langley & Ohsson, 1984). Like
Cirrus, these systems analyze data off-line, because they are too slow for real-time use in an intelligent
tutoring system. A more important limitation is that all three systems, Cirrus, ACM and Debuggy (but not
IDebuggy, a variant of Debuggy), expect data from all the problems to be available initially, whereas
real-time student modelling requires taking in problem solutions as they are generated, and revising the
student model incrementally. Incremental versions of all the analysis algorithms used by Cirrus exist in
the machine-learning literature, but we have not yet tried to convert them because we are, at present,
more interested in developing Cirrus as a tool for scientists.

The most important direction for improving Cirrus is to relax the assumptions about problem solving
that are built into it. We would like to use Cirrus to analyze protocols of college students solving physics
problems, which were graciously given to us by M.T.H. Chi. Almost all the work on physics to date has
used coarse-grained protocol analyses, such as constrasting the order in which novices and experts write
equations. This misses some interesting behavior, such as planning and envisioning, which is revealed in
some of the subjects' verbal commentary. As mentioned earlier, Cirrus' assumptions do not allow for
"dual world" problem solving, so this kind of behavior can not be modelled. Significant extension to Cirrus
will be required.

The current version of Cirrus is definitely useful, although it is still a research prototype rather than
robust, distributable software. Nonetheless, it demonstrates that human protocol analysis can be aided
by computer-based tools. It has taken longer to develop these tools than it took to develop statistical
packages because the underlying machine learning technology was developed only recently.
Nonetheless, the way seems clear for further development of protocol analysis tools, which should allow
much easier interpretation of a particularly rich and revealing window on human cognition.
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